Ridging Methods in Local Polynomial Regression

نویسنده

  • B. Seifert
چکیده

B. Seifert Th. Gasser University of Zurich Department of Biostatistics Sumatrastrasse 30 CH{8006 Z urich, Switzerland Abstract When estimating a regression function r or its th derivative, local polynomials are an attractive choice due to their exibility and asymptotic performance. Seifert & Gasser (1996) proposed local polynomial ridging to overcome problems of local polynomials with variance for random design while keeping their advantages. In this paper we present a data{adaptive spatial choice of the ridge parameter which outperforms our previously used rule of thumb. The main message is, however, that ridging is a powerful tool for the improvement of local polynomials, whereas the choice of the ridge parameter is not so decisive, but can improve the t to some extent. Local polynomial ridging is related to methods of shrinking the estimator towards the origin, to adaptive order choice, and to polynomial mixing. Relations between these methods and ridging will also be discussed. The concept of ridging is not restricted to local modi cations of estimators. Many penalized estimators like spline smoothers are global ridge estimators. A penalized local polynomial estimator (Seifert & Turlach 1996) shows an attractive performance and shares all asymptotic properties with local polynomials.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

THE COMPARISON OF TWO METHOD NONPARAMETRIC APPROACH ON SMALL AREA ESTIMATION (CASE: APPROACH WITH KERNEL METHODS AND LOCAL POLYNOMIAL REGRESSION)

Small Area estimation is a technique used to estimate parameters of subpopulations with small sample sizes.  Small area estimation is needed  in obtaining information on a small area, such as sub-district or village.  Generally, in some cases, small area estimation uses parametric modeling.  But in fact, a lot of models have no linear relationship between the small area average and the covariat...

متن کامل

Using SIMEX for Smoothing-Parameter Choice in Errors-in-Variables Problems

SIMEX methods are attractive for solving curve estimation problems in errors-in-variables regression, using parametric or semiparametric techniques. However, nonparametric approaches are generally of quite a different type, being based on, for example, kernels, local-linear modeling, ridging, orthogonal series, or splines. All of these techniques involve the challenging (and not well studied) i...

متن کامل

NON-POLYNOMIAL SPLINE FOR THE NUMERICAL SOLUTION OF PROBLEMS IN CALCULUS OF VARIATIONS

A Class of new methods based on a septic non-polynomial spline function for the numerical solution of problems in calculus of variations is presented. The local truncation errors and the methods of order 2th, 4th, 6th, 8th, 10th, and 12th, are obtained. The inverse of some band matrixes are obtained which are required in proving the convergence analysis of the presented method. Convergence anal...

متن کامل

Local Polynomial Regression and Its Applicationsin

Nonparametric regression estimates a conditional expectation of a response given a predictor variable without requiring parametric assumptions about this conditional expectation. There are many methods of nonparametric regression including kernel estimation, smoothing splines, regression splines, and orthogonal series. Local regression ts parametric models locally by using kernel weights. Local...

متن کامل

Near-Linear Time Local Polynomial Nonparametric Estimation

Local polynomial regression (Fan & Gijbels, 1996) is an important class of methods for nonparametric density estimation and regression problems. However, straightforward implementation of local polynomial regression has quadratic time complexity which hinders its applicability in large-scale data analysis. In this paper, we significantly accelerate the computation of local polynomial estimates ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998